
PAPER
OVERVIEW OF ARCHITECTURES WITH ARDUINO BOARDS AS BUILDING BLOCKS FOR DATA ACQUISITION AND CONTROL…

Overview of Architectures with Arduino Boards
as Building Blocks for Data Acquisition

and Control Systems
http://dx.doi.org/10.3991/ijoe.v12i07.5818

V.M. Cvjetkovic and M. Matijevic
University of Kragujevac, Kragujevac, Serbia

Abstract—Standard SBCs (Single Board Computer) with
number of standard shields and sensors can be used as
building blocks for rapid development of network of intelli-
gent devices with sensing, control and Internet access. Ar-
duino family of boards having high popularity and large
number of sold units featuring open access, reliability, ro-
bustness, standard connections and low prices, possesses
large potential for implementation of autonomous remote
measurement and control systems of various levels of com-
plexity. As Arduino boards can function independently, they
are complete small computer platforms that can perform
various tasks requiring some kind of interaction with the
outer world. Arduino boards can be used and programmed
in various ways, and can be arranged in various combina-
tions forming some typical implementation architectures
that this paper discusses. Starting from basic and simple
configurations, more advanced are gradually considered
from the aspects of chosen way of programming and com-
bining with other boards. Special attention is devoted to
NodeJS as programming platform for Arduino boards and
considerations of libraries used with Arduino boards like
Johnny-Five, Galileo-io firmata equivalent, mraa library
and other ways of program access to GPIO like Linux Sysfs.
As typical representatives of Arduino boards’ family, the
Arduino Uno, Arduino Due and Arduino Galileo were se-
lected, with justification that all other not mentioned boards
are somewhere between those selected, according to official
hardware specifications.

Index Terms—Arduino, configurations, Johnny-Five,
NodeJS

I. INTRODUCTION
Appearance and development of various SBCs like Ar-

duino [1, 2], BeagleBone [3], RaspberryPi [4], RIoT-
board [5], PandaBoard [6], OLiMEX [7] and others to-
gether with mobile phones, created enormous potential for
building various devices capable of interaction with envi-
ronment, data processing and network communication.
Such devices are nowadays also seen and classified as
being part of IoT (Internet of Things). Required function-
alities of IoT devices are usually:
• M2M (Machine to Machine) communication
• Some kind of data acquisition using adequate sensors
• Local processing of acquired data
• Control of some local system
• Upload of acquired and processed data to some cloud

network storage

Some or all of these functionalities can be present in-
cluding also some specific not mentioned here. Mentioned
functionalities are quite general and do not pose limita-
tions by themselves, as the real limits of IoT devices are
mainly determined by processing power, speed, available
memory, power consumption and similar characteristics.
If the task for some IoT device is too demanding, the
possibility of logically redefining the task so that more
than one IoT device could be used and combined to fulfill
the given task, should be considered. That further suggests
the use of a number of inexpensive IoT devices with small
computing power in a network of devices possessing a
significant net effect not possible with a single IoT device.

Regardless of used architecture, including a single de-
vice or many devices, each device should operate reliably
and in predictable way.

Following chapters are organized in this way:
Chapter 2 Overview of Arduino family, with currently

available Arduino general purpose boards grouped accord-
ing to processors on board.

Chapter 3 Overview of programming modes and con-
nections with Arduino boards, enabling various acquisi-
tion and control configurations.

Chapter 4 Overview of architectures with Arduino
boards

Chapter 5 Conclusion
References and Authors

II. OVERVIEW OF ARDUINO FAMILY
Arduino family of boards was selected among others

for its popularity resulting in a large number of users and a
number of boards to choose from. Besides boards that are
more like general purpose computer devices, there are also
boards called “shields” that extend functionalities of
boards for purposes like Ethernet, WiFi and GSM com-
munication, use of SD cards, motor and relays control,
space orientation and other.

Arduino boards are based on Atmel microcontroller
units (MCU). On some more powerful devices there is an
additional microprocessor based computer providing
greater processing power and network communication.

Arduino boards [8] Uno, Nano, Mini 05, Mega 2560,
Leonardo, Micro, Robot, Esplora are based on Atmel
MCUs with AVR architecture.
• ATmega328 – Uno Nano and Mini 05
• ATmega2560 – Mega 2560
• ATmega32u4 – Leonardo, Micro, Robot, Esplora

10 http://www.i-joe.org

PAPER
OVERVIEW OF ARCHITECTURES WITH ARDUINO BOARDS AS BUILDING BLOCKS FOR DATA ACQUISITION AND CONTROL…

Some of the boards have variants with added function-
alities:
• Arduino Ethernet (ATmega328) based on Uno,

Ethernet enabled, Micro SD card
• Mega ADK (Accessory Development Kit) (AT-

mega2560) for use with Android phones
• Leonardo ETH (ATmega32u4) based on Leonardo,

Ethernet enabled, Micro SD card

All previously mentioned Arduino devices have AVR
MCU operating at 16MHz frequency.

Arduino Due is different, as it is based on Atmel
SAM3X8E MCU with 32-bit ARM Cortex-M3 CPU
(Central Processing Unit) core running on 84MHz. Also,
Due has significantly larger memory – SRAM (Static
RAM) for program and flash memory for uploaded code.

Arduino M0 and M0 Pro are advanced versions of Uno
based on SAMD21 MCU, with 32-bit ARM Cortex M0
core running at 48MHz.

Arduino boards Industrial 101, Tian, Yun, Yun Mini,
are MCU based, but also have additional MIPS processor
[9] based computer supporting Linino [10] Linux distribu-
tion based on OpenWRT [11]. Additional Linux computer
provides extra processing power for support of MCU
acquisition and control tasks.

Boards Intel Galileo and Intel Galileo Gen 2 are based
on Intel Quark SoC X10000, a 32-bit Intel Pentium pro-
cessor-class system on a chip (SoC). That processor runs
both the Linux and Arduino acquisition code. Intel Galileo
boards are pin to pin and software compatible with other
Arduino boards.

Finally, the Intel Edison board is based on two proces-
sors, the Intel Atom 500MHz dual-core, dual-threaded
CPU and an Intel Quark 100MHz MCU.

From this brief overview of current Arduino boards, it
can be seen that there are two kinds of boards:
• With MCU as single processor capable of running

Arduino code, called sketch
• Boards with added processor for running Linux

which provides additional processing power and sup-
ports acquisition and control tasks of MCU

• Intel Galileo and Intel Galileo Gen 2 boards as a spe-
cial case of boards running Linux where Intel proces-
sor executes both Arduino sketch and Linux

Arduino Uno board is a typical representative of MCU
only based boards, as an effort was made for other boards
to be pin to pin and software compatible.

Arduino Due is a top representative of high perfor-
mance MCU only based boards, as it has highest MCU
clock frequency and available memory.

Intel Galileo is a representative of MCU boards with
added Linux computer for additional processing support
of acquired data and network communication.

III. OVERVIEW OF PROGRAMMING MODES AND
CONNECTIONS WITH ARDUINO BOARDS

A. Features of Arduino boards
Arduino boards [12, 13] are designed to provide inter-

action of a computer system with some environmental
physical quantities using appropriate sensors. All boards

possess general purpose inputs and outputs (GPIO). Pres-
ence of GPIO is the main difference from usual computer
systems for everyday use – desktop, laptop, tablets and
smart phones. GPIO has two main types of input / output
system, analog and digital. All Arduino boards have ana-
log inputs (AI) for voltage measurement. Number of ana-
log input pins and resolution varies for different boards.
Analog output (AO) can be implemented with digital
outputs as PWM (Pulse Width Modulation) or with ADC
(Analog Digital Converter) circuit. Digital pins can be
used both as input and output (DIO). Arduino boards
support USB communication with external computer
running Arduino IDE (Integrated Development Environ-
ment) for programming in language resembling C. Other
supported communications types are UART (Universal
Asynchronous Receiver Transmitter) TTL (Transistor
Transistor Logic), I2C (Internal IC) / TWI (Two Wire
Interface) and SPI (Serial Peripheral Interface). SPI is
mainly used for connecting boards with various shields as
it provides very fast communication. UART is hardware
implemented for USB on digital lines 0 and 1, but it can
be also quite easily software implemented with provided
SoftwareSerial library using digital I/O. Serial communi-
cation is convenient for data exchange between boards.
TWI can also be used for communication between boards
or other devices with provided Wire library and using
SDA (Serial DAta) and SCL (Serial CLock) lines.

Besides GPIO, very important programming aspect is
available memory which is limited as it is part of MCU,
and organized as flash memory for code, SRAM (Static
RAM) for program execution and EEPROM (Electrically
Erasable Programmable Read-Only Memory) as perma-
nent storage for data. Some boards like Yun, Galileo,
Arduino Ethernet and shields like Ethernet, also provide
program access to SD memory cards. Dynamic character-
istics of boards like maximum rate of measurements de-
pend on many factors, with MCU operating frequency as
one of the important but rough indicators. Rates for digital
IO operations are higher than for analog measurements
which use analog digital converter (ADC) circuit that in
general requires many processor cycles for conversion.

Features of selected boards are compared in Table 1.

TABLE I.
FEATURES OF SELECTED BOARDS

 Board

features

Uno Due Galileo

AI 6, 10 bits 12, 12 bits 6, 12 bits

AO 6, PWM, 8 bits 2, DAC, 12 bits 6, PWM 8 bits

DIO 14, 6 PWM, 8 bits 54, 12 PWM 8 bits 14, 6 PWM 8 bits

Processor ATMega 328 AT91SAM3X8E Intel Quark SoC
X1000

Clock 16 MHz 84 MHz 400 MHz

Flash 32 KB 512 KB 8 MB / 512KB

SRAM 2 KB 96 KB 512 KB

DRAM - - 256 MB

EEPROM 1 KB - -

Micro SD - (on shield only) - (on shield only) Up to 32 MB

Ethernet - (on shield only) - (on shield only) 10/100 Mb/s

iJOE ‒ Volume 12, Issue 7, 2016 11

PAPER
OVERVIEW OF ARCHITECTURES WITH ARDUINO BOARDS AS BUILDING BLOCKS FOR DATA ACQUISITION AND CONTROL…

B. Programming modes of Arduino boards
Arduino and compatible boards can be programmed in

a number of ways. Depending on selected way of pro-
gramming, Arduino boards can be used in a variety of
configurations ranging from simple with only one board,
to configurations including two or more boards and other
devices. This paper will consider and discuss using of
JavaScript (JS) programming language with various con-
figurations primarily consisting of, and based on Arduino
boards. Use of JS can also include communication with
Arduino boards programmed in Arduino language (AL)
resembling C. Programming modes of Arduino boards
that will be considered in this paper are:
• Programing in AL from Arduino IDE
• Using JS with Standard Firmata and Johnny Five

framework
• Using Sysfs on boards with Linux
• Using NodeJS on boards with Arduino-IO library

and Johnny Five framework
1) AL and Arduino IDE
All Arduino boards including compatible boards like

Galileo, can be programmed in Arduino IDE which is
used for program development in AL. IDE creates project
with skeleton code, a starting point for development of
user code arranged and saved in file called sketch. It per-
forms syntax check of sketch code, compiles and uploads
compiled code to selected board using USB connection.

IDE comes with large number of example sketches
covering wide range of possible applications with sensors,
actuators, displays, communication, extension boards, SD
cards and support for some specific boards like Robot,
Esplora and others.

Fig. 1 illustrates the basic connection of Arduino board
with PC using USB cable. Once the compiled program
code is uploaded to board flash memory, program execu-
tion automatically starts and functions as independent
system.

After start of the program, data from Arduino board can
be obtained using monitor program available from IDE
which displays data sent from running program.
Data display from monitor program can be a very useful
debugging tool.

User developed custom sketches can include many li-
braries available from IDE that support various functional-
ities of Arduino boards:
• SPI
• Ethernet
• WiFi
• GSM
• TWI - Wire
• UART / software serial

Some libraries are supplied from a sensor manufacturer,
like for instance DHT library for Digital Temperature and
Humidity sensor [14] from AdaFruit [15].

Advanced boards that have besides MCU also the on
board Linux system, like Yun, can communicate with
Linux system from sketch code using Bridge library from
AL.

2) JS with Firmata and JohnnyFive library
Java Script (JS) is best known as language for web clients
scripting, providing functionalities on web pages. JS is
quickly gaining popularity and spreading to web server
platforms due to appearance of NodeJS [16] which is JS
platform based on Chrome V8 JavaScript engine. NodeJS
offers use of the same language and technology both on
web clients and servers. Besides, NodeJS on web servers
offers good performance and execution of asynchronous
JS code. NodeJS quickly spreads to various computing
areas with development of NPM [17] (Node Package
Manager) modules that are installed in NodeJS and extend
available functionalities. JS as a language of web enters
the fields of IoT and robotics with development of John-
ny-Five [18] (JF) JS programming framework. As the
Arduino boards cannot be directly programmed in JS, the
matching software layers are required consisting of the
mentioned JF framework and Arduino StandardFirmata
[19] (ASF) library. ASF is installed in Arduino board
flash memory as sketch implementing the Firmata proto-
col [20] (FP) for communication between MCU and ap-
plication on host computer. JS code running on NodeJS
platform on host PC using JF framework communicates
with Arduino board over USB cable and FP. Such a con-
figuration is presented in Fig. 2. JF currently introduces
some limitations when accessing boards with advanced
features comparing to standard Arduino Uno board. 12 AI
pins of Arduino Due, comparing to 6 of Uno, can be ac-
cessed by JF but with analog resolution of only 10 bits as
is for Uno, although
Due has analog resolution of 12 bits. Programming ele-
gance of JF has to be paid with some limitations when
accessing advanced boards features, which makes JF use
acceptable only for basic boards. Further development of
JF may bring improvements.

Figure 1. Arduino board connected with PC

Figure 2. Arduino programming with JS

12 http://www.i-joe.org

PAPER
OVERVIEW OF ARCHITECTURES WITH ARDUINO BOARDS AS BUILDING BLOCKS FOR DATA ACQUISITION AND CONTROL…

3) Programming with Sysfs on boards with Linux
Advanced boards that have an extra processor in addi-

tion to MCU can be programmed with standard Arduino
IDE in AL, the same as boards without extra processor,
and with tools generally available from Linux operating
system (OS). Additional processor comes with significant-
ly larger memory and higher operating frequency. Besides
higher processing power, Linux computer with MPU
usually also comes with integrated network adapters and
memory card readers. Basic difference between MCU and
MPU is a real time operation which is possible with MCU,
but not with MPU. MPU systems on Arduino boards host
some Linux distribution like Linino which is based on
OpenWrt on Yun board, and Yocto [21] Linux distribution
for Intel Galileo board. The basic Linux distributions are
preinstalled on Yun and Galileo boards. Galileo board
supports installation of other Linux distributions from
Intel, allowing that way for installation of the latest ver-
sion which also has additional packages. Alternate Linux
distribution for Galileo is created from the image to micro
SD card, and allows for booting the new version if the SD
is inserted to board, if not, factory default will be active.
Yun can also update Linux from SD card.

On board Linux system can be reached in various ways.
Yun has a so called “bridge”, which is a library for pass-
ing information between processors and allows reaching
Linux from IDE sketches and vice versa. There are two
IDEs for Galileo Linux programming, the Intel XDK IoT
Edition [22] primarily for NodeJS programming in Linux
and Intel version of Eclipse IDE [22] for Java and C++
programming. IDEs also support and enable project files
upload to board.

Besides using IDEs, on board Linux system can be
reached with serial communication and SSH client like
Putty [23] providing access to Linux from terminal. Yun
can be reached through built in network adapters, while
Galileo also offers connection through RS 232 serial cable
which is convenient for initial Linux system configura-
tion. File transfer with Linux system can be accomplished
with SCP (Secure CoPy) clients based on SSH, like Win-
SCP [24].

Galileo GPIO ports can be accessed from Linux shell
using Sysfs interface [25]. Sysfs is a virtual file system in
Linux which exposes devices as files, and operations with
devices as file operations which is presented in Fig. 3.

In order to be used, GPIO port has to be exported to
Sysfs. For analog input A0, the GPIO port 37 which con-
trols the multiplexer channel 0 is exported as:

echo -n "37" > /sys/class/gpio/export

After exporting, the direction is specified:
echo -n "out" > /sys/class/gpio/gpio37/direction

A0 input is connected to ADC AD7298 circuit used in
Galileo with:

echo -n "0" > /sys/class/gpio/gpio37/value

After setting up, analog value from A0 can be obtained
with:

cat /sys/bus/iio/devices/iio\:

device0/in_voltage0_raw

Fig. 3 displays previous commands and results of 3
readings of A0 connected to function generator. In a simi-
lar way, digital IO can be accessed and controlled, includ-
ing PWM. If executed from within a program in Linux,
these commands can be regarded as a GPIO API.

Fig. 4 illustrates concept of program development with
Sysfs that requires no special IDE for Arduino or Galileo.

Program using Sysfs can be developed on host PC, then
uploaded to Galileo and started from shell using SSH
based clients. It is also possible to develop program on
Galileo only, by creating all files from shell.

4) Hosting NodeJS on board
Boards with Linux system can host applications requir-

ing use of GPIO. NodeJS applications hosted on board
and using JF framework have many advantages compar-
ing to NodeJS applications hosted on PC and managing
MCU systems via USB and Firmata protocol.

Board that hosts JF based application can operate inde-
pendently, not requiring extra PC. Consequently, applica-
tions based on single device tend to be more robust in
some situations, as the automatic restart after power fail-
ure for instance. It is also expected that higher signal rates
will be possible by omitting USB and Firmata protocol
communication.

As the JF framework was designed to work with Firma-
ta protocol, additional software layer with same interface
is required when executing on the host board. That addi-
tional software layer is Galileo-IO [26], an IO plugin for
JF and also standalone module, which can be used inde-
pendently from JF in NodeJS applications. Fig. 5 illus-
trates concept of onboard program development with JF /
Galileo-IO.

Besides JF and Galileo-IO, the mraa [27] library can be
used for access to GPIO on Galileo boards from NodeJS,
Python and Java. Intel XDK IoT IDE uses mraa and pro-
vides complete environment for development and upload
of NodeJS projects to Galileo boards including Linux
shell access. Fig. 6 illustrates configuration with Intel
XDK IoT IDE and mraa library.

Figure 3. Configuration and reading of A0 with Sysfs

Figure 4. Program development with Sysfs

iJOE ‒ Volume 12, Issue 7, 2016 13

PAPER
OVERVIEW OF ARCHITECTURES WITH ARDUINO BOARDS AS BUILDING BLOCKS FOR DATA ACQUISITION AND CONTROL…

Figure 5. Program development with JF / Galileo-IO

Figure 6. Program development with Intel XDK IoT IDE and mraa

library

IV. OVERVIEW OF ARCHITECTURES WITH ARDUINO BOARDS

A. Requirements for system design
Arduino boards can be used for various tasks requiring

interaction with environment. Due to small dimensions,
low power consumption, significant computing potential,
ability to read and generate analog and digital signals,
possessing network connections, these boards are conven-
ient computing platforms for environment monitoring and
control of artificial systems. As the environment is com-
plex, characterized by many physical quantities, develop-
ment of corresponding applications for monitoring and
control requires adequate design in broader sense that
consists of standard phases of software design or software
life cycle phases.

Analysis of the environment and system to be con-
trolled creates model that includes physical quantities to
be measured and aspects to be controlled. Physical quanti-
ties are of analog nature with continuous values requiring
use of adequate measurement converters or sensors which
output standard electrical signals measured by analog
inputs on boards which can also generate analog and digi-
tal signals for control of devices and actuators, and com-
munication with other systems.

Depending on complexity of required task, systems
with various configurations can be designed. Configura-
tion aspects that are of interest for this paper are choice of
the board, board programming, communication with other
systems, single or multi board system, and scalability of
the monitoring and control system. Configurations of
measurement and control devices attached to GPIO board
pins will not be considered.

B. Single board configuration
Board with uploaded sketch and power supply operates as
independent device. Fig. 1 illustrates such simple configu-
ration. PC is required for sketch development and upload
to board, but after that board functions on its own. Com-

puting resources and GPIO pins on one board may be
enough for monitoring and control application, and if the
task of the board is to serve as autonomous controller or
regulator for some system, such simple configuration is
quite adequate. Possible problem with such simple con-
figuration may arise if the communication and transfer of
acquired data to other computer systems is required for
processing and storage by applications working on other
devices. In some simple cases, the LCD device for display
attached to board as extension may be enough, but in
general for data transfer, a connected PC with running
application for data processing and storage is necessary.
Connected PC can further provide for acquired data trans-
fer and also for extra data processing and return of pro-
cessed signals for control purposes.

C. Single board with network communication
Utility of a single board configuration significantly de-

pends on communication with other computing devices
required for acquired data processing and storage. Boards
directly support various wired serial communications such
as UART, SPI, TWI and USB. Real tasks for monitoring
and control frequently require remote placement of sens-
ing devices attached to board, with board being also
placed near points for monitoring and control. In such
cases an adequate communication channel between board
and other computing device must be provided over arbi-
trary distance. A good solution candidate is existing com-
puter network or an extension of network being quite
satisfactory with the exception of some rare extreme con-
ditions, such as extreme electrical interference, extreme
temperatures, pressures, chemically active agents and
similar that require advanced solutions. Fig. 7 illustrates
single board configuration using Ethernet adapter called
shield in Arduino terminology.

Instead of Ethernet shield, WiFi or GSM shields could
be used depending on specific conditions that may favor
one over the others. Selection of shield also affects the
sketch with code, as it must programmatically support
used shield in addition to acquisition and control tasks.
Client symbol in Fig. 7 stands for any client using the
board, being it a software or a human client using brows-
er.

D. Single board with Ethernet shield and web server
Simple configuration with a single board and Ethernet
shield can provide basic and simplified web access due to
limited memory of microcontroller board. Provided web
access is best used for communication with remote client
for the purposes of sending acquired data from sensors at
client request, or receiving control data from client. In this
configuration the client is software implemented and acts
as a bridge between Arduino board and main web server
on a PC computer. User as the main client directly com-
municates with web server on PC which can be arbitrarily
complex. Fig 8 illustrates such configuration. Although
any web server can be used, NodeJS is convenient for
good performances, and using JS for code on software
client, server and web page.

E. Single board with Firmata and Johnny-Five
Configuration in Fig. 8 provides web access to Arduino
board using PC based server and network enabled board.
In general case it requires two computers, one for pro-
gramming, and other for web, although the same computer

14 http://www.i-joe.org

PAPER
OVERVIEW OF ARCHITECTURES WITH ARDUINO BOARDS AS BUILDING BLOCKS FOR DATA ACQUISITION AND CONTROL…

could be used for both tasks, with web server being also
used for specific task of board programming in that case.
Board being programmed in AL deviates from JS pro-
gramming paradigm. Modified configuration with Firmata
code on board allowing programming with JS exclusively
is illustrated in Fig. 9. That configuration also does not
require network adapter, as the web server is used for
access to Arduino board. Formally, the configuration in
Fig. 9 is equivalent to configuration in Fig. 8 from the
aspect of client. Firmata configuration is with less devices,
but AL configuration has two important advantages.

First advantage is that Johnny-Five library poses vari-
ous limitations for full use of potentials of some boards,
and does not cover some specific sensors for which AL
libraries exist. Second advantage is system scaling, when
more boards are added to the system. Adding of new AL
boards might require some changes of web server soft-
ware, while adding of Firmata boards would require new
USB hardware connections and adding of software for
serving each USB connected board.

All USB connected boards must be placed within few
meters distance from server, while for AL board with
network adapter distance of physical placement is irrele-
vant.

F. AL programmed Galileo board
Galileo board although significantly different from

boards with controller is software and pin to pin compati-
ble with Arduino UNO, so it can be connected, pro-
grammed and used the same as Arduino UNO board.
Although more expansive than UNO, the price of UNO
plus the price of network adapter is comparable to price of
Galileo board, suggesting that Galileo board may be a
better investment than Arduino board with network adapt-
er, bearing in mind Linux OS on Galileo board. Fig. 10
illustrates equivalent configuration of Galileo board with
configuration in Fig. 7. Important advantage of Galileo
configuration is a significantly larger memory.

G. Galileo Linux programming
Full potential of Galileo board can be unleashed with
programming for its Linux platform. Fig. 11 illustrates the
generic configuration for Galileo Linux programming.
Variants for Galileo Linux programming may differ de-
pending on used development IDE, programming tech-
nology and used support libraries. As mentioned in previ-
ous chapter, three basic configurations for Galileo Linux
programming were considered:
• Sysfs Linux programming, Fig. 4
• NodeJS with JF / Galileo-IO, Fig. 5
• NodeJS with Intel XDK IoT based on mraa library,

Fig. 6

Each of the configurations can further have its own sub
variants.

Generic programming configuration in Fig. 11 com-
prise three configurations with added client. In order to
obtain optimal solution for given requirements, mentioned
programming approaches can be combined.

H. Web Interface for Arduino board
Web communication between Arduino board and soft-

ware client can be standardized with definition of appro-
priate interface. Fig. 12 illustrates the concept of web

interface [28]. Structure of web interface is illustrated in
Fig 13. Web interface specifies allowed commands and
operations depending on configuration of the board.

Main web server communicating with Arduino board in
Fig. 12 is implemented as NodeJS on Galileo board sug-
gesting that whole hardware configuration for monitoring
and control can consist only of Arduino and compatible
boards, without PC computers, with no serious limitations.
Arduino board with Ethernet shield plays a role of the so
called acquisition web server that performs required oper-
ations with attached sensors and devices and sends ac-
quired data, upon received request. Main web server has
software implemented client that sends requests to acqui-
sition server as a result of user requests to main web serv-
er. Galileo board implementing main web server has more
memory and processing capacities comparing to Arduino

Figure 7. Single board configuration with Ethernet adapter

Figure 8. Arduino with web client access

Figure 9. Single Arduino board with Firmata and Johnny-Five

Figure 10. Galileo board used as UNO board with network adapter

iJOE ‒ Volume 12, Issue 7, 2016 15

PAPER
OVERVIEW OF ARCHITECTURES WITH ARDUINO BOARDS AS BUILDING BLOCKS FOR DATA ACQUISITION AND CONTROL…

controller boards. Besides hosting a main web server,
Galileo board can also be used for measurement and con-
trol.
Web interface in Fig. 13 specifies three possible modes of
communication depending on board being communicated
with. The first mode named “UNO interface” is the most
general, as it specifies standard communication with Uno
board that other boards are compatible with. Specified
communication includes IO pins and if required, access to
UART, SPI and TWI communication can also be speci-
fied. Second mode named “Board specific interface” in
addition to first, specifies communication with particular
board having more advanced configuration than Uno.
Separate interface is required for each specific non UNO
Arduino board. Third interface mode is the most specific,
as it specifies communication with actual setup configura-
tion connected to board pins, the sensors and actuators.

Arrows in Fig. 13 signify that “UNO interface” as more
general interface can also be used with more specific non
UNO boards, as they are UNO compatible.

I. Scaling of Arduino based system
Various considered configurations with Arduino and

compatible boards may offer adequate solution for meas-
urement and control tasks on systems which can be locat-
ed at any place provided with adequate computer network
infrastructure. Besides network requirement, systems to be
monitored and controlled should be concentrated with
components relevant for measurement and control being
relatively close and within reach of cables connecting
sensors and devices with boards. For systems consisting of
components distributed at greater distances, and with large
number of measurement and control points, an adequate
extension of considered basic configurations is required,
that will follow and resemble the configuration of the
system. Fig. 14 illustrates the schematic of extension
structure based on considered elementary configurations.
Remote web user represented as green block directly ac-
cess the main web server which is on the level 1 of ex-
tended configuration.
Main web server at level 1 is a direct entry point to scala-
ble monitoring and control system that can be extended as
required.

Configuration only with main web server and acquisi-
tion server A in Fig. 14 resembles configurations in Fig. 8
and 12. Blue solid lines designate primarily computer
network connections which could also be USB as well, in
a special case when connecting web server at some level
with acquisition server. A number of remote acquisition
servers which are boards with network adapters, can be
attached to main web server. Acquisition servers A and B
on Fig. 14 represent acquisition servers directly connected
to configuration level 1 with possibility of adding more
servers on the same level, C, D, etc. as required. If the
structure of distributed system is of hierarchical type, then
it may be more convenient to add new acquisition servers
not directly on level 1, but to also add web servers which
are called by software clients from main web server. Web
servers 1 and 2 in Fig. 14 are examples of web servers on
level 2. Servers at level 2 can be accessed by software
clients from main web server, but could in principle be
also reached directly from the user, which is designated by
dotted red lines. Dotted red lines designate alternate direct
access by the user to web servers on the lower configura-

tion levels. Blue lines are regular access paths that follow
and respect hierarchy, and are intended to be used by
ordinary regular users that access the system in a safe and
prescribed way. Red dotted lines are direct paths to lower
levels that some users can be authorized for, in order to
use it for special purposes, such as maintenance, trouble-
shooting, software configuration changes that can require
such direct access. Designation of servers in Fig. 14 fol-
low hierarchy logic, and in addition, web servers at the
same level have the same color, while all acquisition serv-
ers are red. Hierarchy configuration in Fig. 14 can be
extended with arbitrary number of web servers, configura-
tion hierarchy levels, and acquisition servers as required.

V. CONCLUSION
SBCs for acquisition and control based on single mi-

crocontroller or with additional processors are quickly
becoming important platforms for various monitoring and
control tasks, due to small dimensions, reliability, enough
computing power, large existing software support, easy
integration with other larger computer systems and low
price. Arduino family of SBCs is particularly interesting
for its large number of users, variety of boards, board
extensions, programming modes, software support and
influence on products of other manufacturers resulting in

Figure 11. Configuration for Galileo Linux programming

Figure 12. Concept of a web interface

Figure 13. Web interface structure

16 http://www.i-joe.org

PAPER
OVERVIEW OF ARCHITECTURES WITH ARDUINO BOARDS AS BUILDING BLOCKS FOR DATA ACQUISITION AND CONTROL…

Figure 14. Scaling of measurement and control system

Arduino compatible boards. Three representative boards
were selected for consideration and comparison according
to hardware characteristics and programming modes.
Boards with additional processor are particularly interest-
ing as they allow various programming modes as support
for acquisition and control. Various boards and program-
ming modes result in various possible combinations called
configurations in this paper. Single board configurations
were considered and compared according to available
programming modes with particular attention to NodeJS
and libraries for NodeJS supporting Arduino boards. Sin-
gle board configurations are applicable for certain tasks
with real world systems at single location. Applications
for remote and distributed systems require use of network
architecture obtained as direct extension and generaliza-
tion of considered basic single board configurations and
concept of web interface. Presented network configuration
can be further extended with arbitrary number of network
nodes and hierarchical levels. Obtained results are directly
applicable to configurations with nodes being some other,
non-Arduino boards.

As the new board types with improved design, capabili-
ties, processing power, communication appear on regular
bases quite frequently, it is of high importance to continu-
ously and closely follow the development in this field.

REFERENCES
[1] “Arduino” [On line] Available: http://arduino.cc
[2] “Arduino” [On line] Available: http://arduino.org
[3] “BeagleBone Black” [On line] Available:

http://beagleboard.org/BLACK
[4] “Raspberry Pi” [On line] Available: https://www.raspberrypi.org/
[5] “RIoTboard” [On line] Available: http://riotboard.org/

[6] “PandaBoard” [On line] Available:http://pandaboard.org/
[7] “OLiMEX” [On line] Available: https://www.olimex.com/
[8] “Arduino boards” [On line] Available: http://www.arduino.

org/products
[9] “MIPS processors” [On line] Available: http://imgtec.com/mips/
[10] “Linino” [On line] Available: http://www.linino.org/
[11] “OpenWrt” [On line] Available: https://openwrt.org/
[12] M. !valjek, Arduino Succinctly, Syncfusion Inc., 2501 Aerial

Center Parkway Suite 200 Morrisville, NC 27560 USA, 2015,
http://www.syncfusion.com/

[13] A. D’Ausilio, Arduino: A low-cost multipurpose lab equipment,
Behavior Research Methods, vol. 44, 2, pp 305-313, 2012,
http://dx.doi.org/10.3758/s13428-011-0163-z

[14] “DHT 22” [On line] Available: https://www.adafruit.com/pro
ducts/385

[15] “AdaFruit” [On line] Available:https://www.adafruit.com/
[16] “Node.js” [On line] Available: https://nodejs.org/en/
[17] “Node Package Manager” [On line] Available: https://www.

npmjs.com/
[18] “Johnny-Five” [On line] Available: http://johnny-five.io/
[19] “Standard Firmata” [On line] Available: https://www.arduino.cc/

en/Reference/Firmata
[20] “Firmata protocol” [On line] Available: http://firmata.org/wiki/

Main_Page
[21] “yocto Linux” [On line] Available: https://www.yoctoproject.org/
[22] “Intel XDK IoT Edition” [On line] Available:

https://software.intel.com/en-us/iot/software/ide
[23] “putty” [On line] Available: http://www.putty.org
[24] “WinSCP” [On line] Available: https://winscp.net/eng/downlo

ad.php
[25] “Linux Sysfs” [On line] Available: http://www.malinov.com/

Home/sergey-s-blog/intelgalileo-programminggpiofromlinux
[26] “Galileo-IO” [On line] Available: https://github.com/rwaldron/

galileo-io
[27] “mraa” [On line] Available: http://iotdk.intel.com/docs/master/

mraa/
[28] C. Salzmann, S. Govaerts, W. Halimi, D. Gillet, The Smart Device

Specification for Remote Labs, REV 2015, 25-27 Feb. 2015,
Bangkok, Thailand http://dx.doi.org/10.1109/rev.2015.7087292

AUTHORS
V. M. Cvjetkovic is with the Faculty of Science, Uni-

versity of Kragujevac, Serbia. (vladimir@kg.ac.rs)
M. Matijevic is with the Faculty of Engineering, Uni-

versity of Kragujevac, Serbia. (matijevic@kg.ac.rs)

Work on this paper was partly funded by the SCOPES project
IZ74Z0_160454 / 1 “Enabling Web-based Remote Laboratory Commu-
nity and Infrastructure” of Swiss National Science Foundation. Submit-
ted, 30 May 2016. Published as resubmitted by the authors 29 June 2016.

iJOE ‒ Volume 12, Issue 7, 2016 17

